Privacy-Preserving Admission to Mobile P2P Groups

Mark Manulis
Cryptographic Protocols Group
TU Darmstadt & CASED
Scenario: Mobile P2P Groups

Goal Establishment of a (closed) p2p group by mobile users

Research questions
- How to build a group?
- How to admit new members?
- How to prove membership?
- How to communicate securely?

Technical constraints
- Decentralized infrastructure
- Mobility
Group Management Framework

Kim-Mazzocchi-Tsudik Group Management Framework [KMT’03]

Group Charter contains public information about the group

Group Authority manages group admission, is either centralized or distributed

Admission Policy Types
- **Access Control Lists**
 not applicable to p2p groups
- **Centralized decision**
 not applicable to p2p groups
- **Collective decision (voting)**
 - static with fixed threshold of needed votes
 - dynamic with some fraction of needed votes

Privacy-Preserving Admission to Mobile P2P Groups
PerCom 2010/MP2P, Mannheim 02.04.2010 | Mark Manulis | www.manulis.eu
Prior Work uses Threshold Signatures

Digital Signatures
Key generation algorithm returns secret key sk and public key pk.
Signature σ on a message m can be computed using sk and verified using pk.

Threshold Signatures
Users run *distributed key generation (DKG)* and compute public key pk.
Each user U_i holds a *share* s_i of the secret key $sk = f(s_1, ..., s_n)$. sk remains unknown.
Signature σ on a message m can be computed by at least „t-out-of-n“ users.
Threshold-Sig-based Admission Control

Admission Process (general for schemes in [NTY’03, STY04, STY05])
- New member U* obtains pk and sends out own membership request.
- U* requires at least t votes to compute own membership certificate GMC*.
- Each vote gives a *partial signature* σ_i on the infos from membership request.
- Each vote gives a *partial share* $\psi_i(U^*)$ allowing U* to compute own share s^*.

1. obtain
- **Group Charter**
 - pk, t, U₁, ..., Un

2. request (U*)
- (Uᵢ, GMCᵢ, $\sigmaᵢ$, $\psiᵢ(U^*)$)

3+4. at least t responses
- (Uᵢ, GMCᵢ, $\sigmaᵢ$, $\psiᵢ(U^*)$)

5. compute
- certificate $GMC^* = \sigma = f(\sigma_1, ..., \sigma_t)$
- secret share $s^* = f(\psi_1(U^*), ..., \psi_t(U^*))$
Some Drawbacks

Need for Secure Channels
- Distribution of partial shares $p_{s_i}(U^*)$ requires secure channels.
- Otherwise any eavesdropper would be able to compute the share s^*.

Need for Randomization of Shares
- Given $p_{s_i}(U^*)$ it is possible for U^* to compute the secret share s_i of U_i.
- Avoiding this requires expensive random shuffling $^{[HJ]^{95}}$.

Lack of Vote Privacy
- Votes reveal identities of members.
- U^* learns who voted in favor of admission (or against it).
Overview of Our Approach

Admission Control based on Group Key Exchange (GKE)

- Founding users run Group Key Exchange and compute *shared key* k.
- U^* sends own membership request to the group.
- All U_i vote *securely* within the group, i.e. encrypting their votes with k.
- If $(\text{positive votes}) > t$ then all U_i and U^* execute new GKE and compute k'.

```
1. obtain $(U^*, pk^*)$
2. request $(U^*, pk^*)$
3. voting
4. execution of a new GKE session
5. compute $k'$
6. update GC
```

Each σ_i is a signature on $GC = (((U_1, pk_1, ..., U_n, pk_n), t) \text{ generated by } U_i \text{ at the end of the GKE protocol}

Group Charter
$t, (U_1, pk_1, \sigma_1, ..., U_n, pk_n, \sigma_n)$
Initialization using a GKE+P Protocol

Group Key Exchange with On-Demand Derivation of P2P Keys (GKE+P) \([M09, ACMP10]\)

- Computes the **group key** \(k\) and **p2p keys** \(k_{i,j}\) shared between \(U_i\) and \(U_j\) only.
- Each \(U_i\) generates **ephemeral key pair** \((sk_i, pk_i)\) during the protocol execution.
- Each generated ephemeral public key \(pk_i\) is bound to the GKE execution.

Initialization by Founding Group Members

![Diagram showing initialization of group keys](image)

- Each \(U_i\) generates an ephemeral key pair \((sk_i, pk_i)\) during the protocol execution.
- Each generated ephemeral public key \(pk_i\) is bound to the GKE execution.
- Group charter \(t, (U_1, pk_1, \sigma_1, ..., U_n, pk_n, \sigma_n)\)

where \(GC = (t, (U_1, pk_1, ..., U_n, pk_n))\) and \(t\) is the *dynamic* fraction of votes.

Privacy-Preserving Admission to Mobile P2P Groups

PerCom 2010/MP2P, Mannheim 02.04.2010 | Mark Manulis | www.manulis.eu
Voting Process by Current Group Members

- Each U_i holds group key k and owns (sk_i, pk_i).
- (sk_i, pk_i) can be used to sign messages.

1. Obtain (U^*, pk^*)
2. Request (U^*, pk^*)

- $c_i = Enc(k, (vote_i, U^*, pk^*, GC, \sigma_i))$
- c_1 to c_n are sent over the public channel.

- Decrypt all c_i
- Verify all σ_i using pk_j
- Eliminate incorrect votes
- Compute fraction t

- If t is sufficient, then execute GKE+P

Group Charter
$t, (U_1, pk_1, \sigma_1, \ldots, U_n, pk_n, \sigma_n)$
Admission to the Group

Admission of U* to the Group
- the protocol proceeds similar to the initialization step
- all users including U* participate in the GKE+P session

Diagram:
- Fresh key pairs
- Key pair from membership request of U*
- Updated GC includes U*
- New group key

Formulas:
\[\sigma_1 = \text{Sig}(sk'_1, GC') \]
\[\sigma_i = \text{Sig}(sk'_i, GC') \]
\[\sigma_n = \text{Sig}(sk'_n, GC') \]
\[\sigma^* = \text{Sig}(sk^*_1, GC') \]

Group Charter:
\[t, (U_1, pk'_1, \sigma_1, ..., U_n, pk'_n, \sigma_n, U^*, pk^*, \sigma^*) \]
Proving Own Group Membership

Proving Group Membership to Insiders and Outsiders
- U_i's public key pk_i is included in GC and signed by all other members
- U_i can prove own membership in a simple signature-based challenge-response

$$U_i \text{ sk}_i \quad \text{challenge c} \quad \sigma = \text{Sig}(\text{sk}_i, c)$$

any member or non-member obtain pk_i

Ver(pk_i, c, σ) \equiv true

Proving Group Membership without Disclosing own Identity
- U_i can run a zero-knowledge proof of knowledge
- U_i proves knowledge of 1-out-of-n private keys sk_i w/o disclosing the exact pk_i
- e.g. using dlog based $(sk_i, pk_i) = (x, g^x)$ one can use the proof from [CM98]
Various Forms of Secure Communication

Secure Group Communication
- members can communicate securely within the group using the *group key* k

Secure P2P Communication
- GKE+P allows any pair of users Uᵢ and Uⱼ to derive a *p2p key* kᵢ,ⱼ
- this derivation does not require any additional communication
- Uᵢ and Uⱼ can use kᵢ,ⱼ to exchange secure messages
- kᵢ,ⱼ remains secret from other parties (including other members)

Secure Communication with Outsiders
- any non-member can encrypt messages for any Uᵢ using pkᵢ from GC
- group key k can be used to derive a group key pair (sk₆, pk₆) such that any outsider can send encrypted message to the whole group using pk₆
Security Issues

Unforgeability
- the goal is to prevent adversary \mathcal{A} from claiming group membership
- in our solution membership can be claimed via an execution of the challenge-response protocol using (Sig, Ver) and public key pk_i from GC
- note that each member’s public key pk_i is signed by all other members
- \mathcal{A} cannot claim group membership since the signature is unforgeable

Anonymity (as a new goal)
- applies only to admissions based on collective decisions
- the goal is to prevent adversary \mathcal{A} from learning (U_i, vote_i)
- in our solution votes are exchanged encrypted with the group key k
- the group key k remains secret from \mathcal{A} due to security of GKE+P
- all (U_i, vote_i) remain secret from \mathcal{A} due to the security of (Enc, Dec)
Conclusion

Group Admission Protocols
- anonymity as a new privacy threat in admission control protocols for p2p groups
- current solutions based on threshold signatures do not support vote privacy

Solution based on GKE+P protocols
- users jointly initialize the group through the run of the GKE+P protocol
- dynamic admission policy is achieved via voting
- voting process preserves privacy of votes
- group membership can be easily proven with challenge-response techniques (possibly without disclosing the identity of the member)

Secure (Intra- and Intergroup) Communications
- secure group communication inside the group and with the outsiders
- secure p2p communication between group members and with outsiders
- flexible GKE protocol from [ACMP10] allows communication within subgroups