Adaptively Securre Non-Interactive Threshold Cryptosystems: New Framework and Constructions

Benoît Libert¹ and Moti Yung²

 $^1 \text{Universit\acute{e}}$ catholique de Louvain, Crypto Group – F.N.R.S. 2 Google Inc. and Columbia University

November 21, 2011

Darmstadt

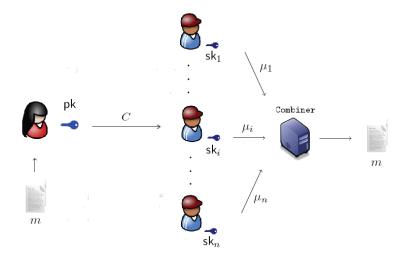
Threshold Cryptography

- Introduced by Desmedt-Frankel (Crypto'89) and Boyd (IMA'89)
- Split private keys into *n* shares SK_1, \ldots, SK_n so that knowing strictly less than $t \leq n$ shares is useless to the adversary.
- At least $t \leq n$ shareholders must contribute to private key operations.
 - Decryption requires the cooperation of *t* decryption servers.
 - Signing requires at least *t* servers to run a joint signing protocol.
- *Robustness*: up to t − 1 ≤ n malicious servers cannot prevent an honest majority from decrypting/signing.

イロト イポト イモト イモト

Threshold Cryptography

The public-key encryption case:



Outline

Threshold Cryptography

- Static vs Adaptive corruptions
- Security notions: CCA2 security and consistency

A New Framework for Non-Interactive Threshold CCA2 Encryption

- All-But-One Perfectly Sound Hash Proof Systems
- General Construction
- Instantiations based on Simple Assumptions
- Efficiency comparisons

Static vs Adaptive corruptions

• Static corruptions: adversary corrupts servers *before* seeing the public key.

Robust threshold cryptosystems with IND-CCA2 security:

- Shoup-Gennaro (Eurocrypt'98): in the ROM.
- Canetti-Goldwasser (Eurocrypt'99): interactive decryption or storage of many pre-shared secrets; non-optimal resilience $t \approx n/3$.
- Abe (Crypto'99): optimal-resilience t = (n 1)/2 in [CG'99].
- Dodis-Katz (TCC'05): generic constructions; ciphertexts of size O(n).
- Boneh-Boyen-Halevi (CT-RSA'06): no interaction needed for robustness.
- Wee (Eurocrypt'11): generic constructions from (threshold) extractable hash proof systems.

(日) (周) (三) (三)

Static vs Adaptive corruptions

- Adaptive corruptions: adversary corrupts up to t 1 servers at any time.
 - Canetti *et al.* (Crypto'99) and Frankel-MacKenzie-Yung (ESA'99, Asiacrypt'99): reliance on erasures.
 - Jarecki-Lysyanskaya (Eurocrypt'00): no need for erasures, but interaction required at decryption with Cramer-Shoup.
 - Lysyanskaya-Peikert (Asiacrypt'01): adaptively secure signatures with interaction.
 - Abe-Fehr (Crypto'04): adaptively secure UC-secure threshold signatures and encryption with interaction.
 - Almansa-Damgaard-Nielsen (Eurocrypt'06): adaptively secure proactive RSA signatures.

6 / 25

イロト イポト イモト イモト

Threshold Cryptosystems: Our Goal

- Until recently (and despite more than 10 years of research), adaptive security has not been achieved in threshold encryption schemes with:
 - CCA2-security
 - Non-interactive schemes
 - Robustness against malicious adversaries
 - Optimal resilience (t = (n-1)/2)
 - No erasures for shareholders
 - Share size independent of *t*, *n*
 - Proof in the standard model

CCA2-Secure Non-interactive Threshold Encryption

Recently (ICALP'11), we described:

- The first adaptively secure fully non-interactive threshold cryptosystem with
 - CCA2 security and robustness w/o random oracles
 - Short (*i.e.*, O(1)-size) private key shares
- The construction
 - Builds on the dual system encryption approach (Waters, Crypto'09) and the Lewko-Waters techniques (TCC'10).
 - Handles adaptive corruptions by instantiating Boneh-Boyen-Halevi (CT-RSA'06) in bilinear groups of order $N = p_1 p_2 p_3$.

 \Rightarrow Ciphertexts live in the subgroup \mathbb{G}_{p_1} , private keys in $\mathbb{G}_{p_1p_3}$

• Gives adaptively secure non-interactive threshold signatures; also yields non-interactive *forward-secure* threshold encryption.

(日) (同) (三) (三)

CCA2-Secure Non-interactive Threshold Encryption

New results: a new approach from hash proof systems with *public* verifiability

- Combines universal hash proofs with simulation-sound proofs of ciphertext validity (\Rightarrow publicly verifiable ciphertexts).
- Proofs of validity associated with tags and perfectly sound on all but one tag.
- New constructions in groups of order $N = p_1 p_2$ and *prime*-order groups
 - Better efficiency
 - Tighter security (no gap O(q) in the reduction) under a single assumption
 - Easier to combine with a DKG protocol

(日) (同) (日) (日)

- Chosen-ciphertext (IND-CCA) security:
 - 1. Challenger generates PK, $SK = (SK_1, ..., SK_n)$ and gives PK to A.
 - 2. \mathcal{A} makes adaptive queries
 - Corruption $i \in \{1, \ldots, n\}$: \mathcal{A} receives SK_i (up to t 1 queries allowed).
 - Decryption (i, C): A receives $\mu_i = Share-Decrypt(PK, i, SK_i, C)$
 - 3. \mathcal{A} chooses M_0, M_1 and gets $C^* = Encrypt(PK, M_\beta)$ for some $\beta \notin \{0, 1\}$.
 - 4. ${\cal A}$ makes further queries with restrictions.
 - 5. ${\mathcal A}$ outputs $eta'\in\{0,1\}$ and wins if eta'=eta

10 / 25

- Chosen-ciphertext (IND-CCA) security:
 - 1. Challenger generates PK, $SK = (SK_1, \ldots, SK_n)$ and gives PK to A.
 - 2. \mathcal{A} makes adaptive queries
 - Corruption $i \in \{1, \ldots, n\}$: \mathcal{A} receives SK_i (up to t 1 queries allowed).
 - Decryption (*i*, *C*): A receives $\mu_i = Share-Decrypt(PK, i, SK_i, C)$
 - 3. \mathcal{A} chooses M_0, M_1 and gets $C^* = Encrypt(PK, M_{\beta})$ for some $\beta \stackrel{R}{\leftarrow} \{0, 1\}$.
 - 4. ${\cal A}$ makes further queries with restrictions.
 - 5. \mathcal{A} outputs $eta' \in \{0,1\}$ and wins if eta' = eta

- Chosen-ciphertext (IND-CCA) security:
 - 1. Challenger generates PK, $SK = (SK_1, \ldots, SK_n)$ and gives PK to A.
 - 2. \mathcal{A} makes adaptive queries
 - Corruption $i \in \{1, ..., n\}$: \mathcal{A} receives SK_i (up to t 1 queries allowed).
 - Decryption (*i*, *C*): A receives $\mu_i = Share-Decrypt(PK, i, SK_i, C)$
 - 3. \mathcal{A} chooses M_0, M_1 and gets $C^* = Encrypt(PK, M_\beta)$ for some $\beta \stackrel{R}{\leftarrow} \{0, 1\}$.
 - 4. \mathcal{A} makes further queries with restrictions
 - 5. $\mathcal A$ outputs $eta'\in\{0,1\}$ and wins if eta'=eta

10 / 25

- 不同 ト イモト イモト

- Chosen-ciphertext (IND-CCA) security:
 - 1. Challenger generates PK, $SK = (SK_1, \ldots, SK_n)$ and gives PK to A.
 - 2. \mathcal{A} makes adaptive queries
 - Corruption $i \in \{1, ..., n\}$: \mathcal{A} receives SK_i (up to t 1 queries allowed).
 - Decryption (*i*, *C*): A receives $\mu_i = Share-Decrypt(PK, i, SK_i, C)$
 - 3. \mathcal{A} chooses M_0, M_1 and gets $C^* = Encrypt(PK, M_\beta)$ for some $\beta \notin \{0, 1\}$.
 - 4. \mathcal{A} makes further queries with restrictions.

5. $\mathcal A$ outputs $eta'\in\{0,1\}$ and wins if eta'=eta

10 / 25

(日) (周) (三) (三)

- Chosen-ciphertext (IND-CCA) security:
 - 1. Challenger generates PK, $SK = (SK_1, \ldots, SK_n)$ and gives PK to A.
 - 2. \mathcal{A} makes adaptive queries
 - Corruption $i \in \{1, ..., n\}$: \mathcal{A} receives SK_i (up to t 1 queries allowed).
 - Decryption (*i*, *C*): A receives $\mu_i = Share-Decrypt(PK, i, SK_i, C)$
 - 3. \mathcal{A} chooses M_0, M_1 and gets $C^* = Encrypt(PK, M_\beta)$ for some $\beta \stackrel{R}{\leftarrow} \{0, 1\}$.
 - 4. \mathcal{A} makes further queries with restrictions.
 - 5. \mathcal{A} outputs $\beta' \in \{0,1\}$ and wins if $\beta' = \beta$

10 / 25

- 不同 ト イモト イモト

- Consistency:
 - 1. Challenger generates PK, $SK = (SK_1, \ldots, SK_n)$ and gives PK to A.
 - 2. \mathcal{A} makes adaptive queries
 - Corruption query $i \in \{1, \ldots, n\}$: \mathcal{A} receives SK_i .
 - Decryption query (*i*, *C*): A receives $\mu_i = Share-Decrypt(PK, i, SK_i, C)$
 - 3. A outputs a ciphertext C and sets $S = \{\mu_1, \dots, \mu_t\}$, $S' = \{\mu'_1, \dots, \mu'_t\}$ of shares such that
 - C is a valid ciphertext.
 - S and S' are sets of valid shares.
 - Combine(PK, C, S) \neq Combine(PK, C, S').

11 / 25

(日) (同) (日) (日)

A New Framework for Adaptive Security

Based on Hash Proof Systems:

- Let C be a set and $\mathcal{V} \subset C$ be a subset; let (pk, sk) be a key pair such that
 - If $\Phi \in \mathcal{V}$, PrivEval (sk, Φ) is completely fixed by Φ and pk(and computable as PubEval (pk, Φ, r) using a witness r that $\Phi \in \mathcal{V}$).

- If $\Phi \in \mathcal{C} \setminus \mathcal{V}$, PrivEval(*sk*, Φ) is information-theoretically hidden.

- $D_1 = \{ \Phi \mid \Phi \stackrel{\scriptscriptstyle R}{\leftarrow} \mathcal{V} \}$ is indistinguishable from $D_0 = \{ \Phi \mid \Phi \stackrel{\scriptscriptstyle R}{\leftarrow} \mathcal{C} \setminus \mathcal{V} \}.$
- Message *M* can be encrypted as (C₀, C₁) = (M · PubEval(pk, Φ, r), Φ) and decrypted as M = C₀ · PrivEval(sk, C₁)⁻¹.
- In the security proof, to decide if $\Phi^{\star} \in \mathcal{V}$ or $\Phi^{\star} \in \mathcal{C} \setminus \mathcal{V}$, set

$$(C_0^{\star}, C_1^{\star}) = (M_{\beta} \cdot \operatorname{PrivEval}(sk, \Phi^{\star}), \Phi^{\star}).$$

12 / 25

(日) (周) (三) (三)

A New Framework for Adaptive Security

 \bullet In the security proof, to decide if $\Phi^{\star} \in \mathcal{V},$ set

 $(C_0^{\star}, C_1^{\star}) = (M_{\beta} \cdot \operatorname{PrivEval}(sk, \Phi^{\star}), \Phi^{\star}).$

• Private key *sk* is available to the reduction.

• For CCA2-security, the reduction should reject $(C_0, C_1 = \Phi)$ if $\Phi \notin \mathcal{V}$.

 \Rightarrow Cramer-Shoup uses non-interactive designated-verifier proofs that $\Phi\in\mathcal{V}$

• In the threshold setting, $\Phi \in \mathcal{V}$ cannot be checked from partial decryptions.

⇒ Existing solutions [CG99,JL00,AF04] require interaction to render ciphertexts with $\Phi \notin \mathcal{V}$ harmless.

A New Framework for Adaptive Security

Our approach: All-But-One Perfectly Sound Hash Proof Systems

- Combination between
 - Universal hash proofs (simulator knows private keys in reduction).
 - Simulation-sound proofs of ciphertext validity (publicly verifiable ciphertexts).
- Proofs of validity associated with tags and perfectly sound on *all but one* tag.
- Gives new constructions
 - Based on the Subgroup Decision assumption in composite order groups with two primes $N = p_1 p_2$.
 - Or Groth-Sahai proofs (D-Linear/SXDH assumptions) in prime-order groups:
 - \Rightarrow Better efficiency; easier to combine with a DKG protocol.

14 / 25

(日) (周) (三) (三)

All-But-One Perfectly Sound Hash Proof Systems

Non-interactive proofs that $\Phi\in\mathcal{V}$ are associated with tags

- Two distinct setup procedures
 - SetupSound(λ, t, n): gives $(pk, \{sk_i\}_{i=1}^n)$ where pk yields sound proofs.
 - SetupABO(λ, t, n, tag^*): gives $(pk, \{sk_i\}_{i=1}^n)$ and a trapdoor τ such that proofs are perfectly sound on all tags but tag^* .
- Two distinct proving algorithms
 - Prove (pk, tag, r, Φ) : returns real proofs using the witness r that $\Phi \in \mathcal{V}$.
 - SimProve(pk, τ, tag^*, Φ): returns a simulated proof for any $\Phi \in C$.

All-But-One Perfectly Sound Hash Proof Systems

Main properties:

- SETUP INDISTINGUISHABILITY: SetupSound(λ, t, n) and SetupABO(λ, t, n, tag^{*}) have indistinguishable public outputs.
- All-but-one soundness:
 - a. For any $(pk, (sk_1, ..., sk_n), \tau) \leftarrow \text{SetupABO}(\lambda, t, n, \text{tag}^*)$ and any $\text{tag} \neq \text{tag}^*$, if $\pi_{\mathcal{V}}$ is a valid proof w.r.t. tag, then $\Phi \in \mathcal{V}$.
 - b. For any $(pk, (sk_1, ..., sk_n), \tau) \leftarrow \text{SetupABO}(\lambda, t, n, \text{tag}^*)$, SimProve $(pk, \tau, \text{tag}^*, \Phi)$ gives a NIZK proof that $\Phi \in \mathcal{V}$ for any $\Phi \in \mathcal{C}$.

General Construction of Threshold CCA2 Cryptosystem

- Keygen (λ, t, n) : runs SetupSound (λ, t, n) to obtain $(pk, \{sk_i\}_{i=1}^n)$.
- Encrypt(pk, M): generate a one-time signature key pair (SK, VK) $\leftarrow \mathcal{G}(\lambda)$,
 - 1. Sample $\Phi \stackrel{R}{\leftarrow} \mathcal{V}$ using random coins *r*.
 - 2. Compute $C_0 = M \cdot \text{PubEval}(pk, r, \Phi)$.
 - 3. Compute a proof $\pi_{\mathcal{V}} \leftarrow \mathsf{Prove}(pk, \mathsf{VK}, \Phi)$ that $\Phi \in \mathcal{V}$.

Return $C = (VK, C_0, \Phi, \pi_{\mathcal{V}}, \sigma)$, where $\sigma = \mathcal{S}(SK, (C_0, \Phi, \pi_{\mathcal{V}}))$.

- **Share-Decrypt**(*sk_i*, *pk*, *C*):
 - 1. Return \perp if $\mathcal{V}(VK, \sigma, (C_0, \Phi, \pi_{\mathcal{V}})) = 0$ or $\pi_{\mathcal{V}}$ is an invalid proof w.r.t. VK.
 - 2. Otherwise, compute a share $PrivEval(sk_i, \Phi)$ with a proof of validity.
- Combine: verifies all decryption shares and combines them.

イベト イラト イラト

Security

Theorem

The scheme is consistent and IND-CCA2 under adaptive corruptions if

• Σ is a strong one-time signature.

• The ABO-PS-HPS is secure

Idea of the proof of IND-CCA security:

- CRS only allows NIZK proofs in the challenge ciphertext and only the challenger can generate *one* fake proof.
- Adversary can only prove true statements (cf. one time simulation-soundness).
- Simulator knows the decryption keys (as in HPS-based proofs).

18 / 25

Instantiation in groups of order $N = p_1 p_2$

Subgroup Decision Problem: in a group \mathbb{G} of order $N = p_1 p_2$, given $(g \in \mathbb{G}_{p_1}, h \in \mathbb{G})$ and η , decide if $\eta \in_R \mathbb{G}_{p_1}$ or $\eta \in_R \mathbb{G}$.

An ordinary Hash Proof System: let $\mathcal{C} = \mathbb{G}$ and $\mathcal{V} = \mathbb{G}_{p_1}$.

• Setup(λ):

- 1. Choose a group \mathbb{G} of order $N = p_1 p_2$ with $g \stackrel{R}{\leftarrow} \mathbb{G}_{p_1}$.
- 2. Set $X = g^x$ with $x \stackrel{R}{\leftarrow} \mathbb{Z}_N$.
- 3. Let $H : \mathbb{G} \to \{0,1\}^{\ell}$ be a pairwise independent hash function for some ℓ .

Output $pk = (\mathbb{G}, N, g, X, H)$ and sk = x.

- PubEval (pk, r, Φ) : given $r \in \mathbb{Z}_N$ such that $\Phi = g^r$, output $H(X^r)$.
- PrivEval(sk, Φ): given $\Phi \in \mathbb{G}_{p_1}$, output $H(\Phi^{\times})$.

イロト 不得下 イヨト イヨト 二日

Instantiation in groups of order $N = p_1 p_2$

Define $\mathcal{C} = \mathbb{G}$ and $\mathcal{V} = \mathbb{G}_{p_1}$.

- SetupSound(λ, t, n): chooses $g \stackrel{R}{\leftarrow} \mathbb{G}_{p_1}$, $u, v \stackrel{R}{\leftarrow} \mathbb{G}$.
- SetupABO(λ, t, n, tag^*): is like SetupSound but chooses $v = u^{-tag^*} \cdot g^{\alpha}$ where $\alpha \stackrel{R}{\leftarrow} \mathbb{Z}_N$ is the trapdoor $\tau := \alpha$.
- Prove (pk, tag, r, Φ) : given $\Phi = g^r \in \mathbb{G}_{p_1}$, output $\pi_{\mathcal{V}} = (u^{tag} \cdot v)^r$ such that

$$e(g,\pi_{\mathcal{V}})=e(\Phi,u^{\mathrm{tag}}\cdot v),$$

which guarantees $\Phi \in \mathbb{G}_{p_1}$.

• SimProve (pk, τ, tag^*, Φ) : given $\tau = \alpha \in \mathbb{Z}_N$, output $\pi_{\mathcal{V}} = \Phi^{\alpha}$, which satisfies

$$e(g,\pi_{\mathcal{V}})=e(\Phi,u^{\mathsf{tag}^{\star}}\cdot v)$$

since $u^{tag^{\star}} \cdot v = g^{\alpha}$.

Instantiation in prime order groups

Instantiation based on Groth-Sahai proofs and the D-Linear assumption:

- Linear Problem: given $(g, g_1, g_2, g_1^a, g_2^b, Z)$, decide if $Z \stackrel{?}{=} g^{a+b}$.
- Equivalently, given

$$ec{g_1} = (g_1, 1, g), \quad ec{g_2} = (1, g_2, g), \quad ec{arphi} = (g_1^a, g_2^b, Z),$$

decide whether $\vec{g_1}, \vec{g_2}, \vec{\varphi}$ are linearly dependent (*i.e.*, $\vec{\varphi} \stackrel{?}{=} \vec{g_1}^a \cdot \vec{g_2}^b$).

- To commit to $x \in \mathbb{Z}_p$, set $\vec{C} = \vec{\varphi}^x \cdot \vec{g_1}^{t_1} \cdot \vec{g_2}^{t_2}$.
- Dual mode commitments:
 - Perfect binding commitments and perfectly sound proofs if $\vec{\varphi} \notin \operatorname{span}(\vec{g_1}, \vec{g_2})$.
 - Perfectly hiding commitments and WI proofs if $\vec{\varphi} \in \text{span}(\vec{g_1}, \vec{g_2})$.

イロト 不得下 イヨト イヨト 二日

Instantiation in prime order groups

Linear Problem: given $(g, g_1, g_2, g_1^a, g_2^b, Z)$, decide if $Z \stackrel{?}{=} g^{a+b}$.

An ordinary HPS: given $g_1, g_2, g \in \mathbb{G}$, let $\mathcal{C} = \mathbb{G}^3$ and $\mathcal{V} = (g_1^a, g_2^b, g^{a+b})$.

• Setup(λ): choose a group \mathbb{G} of order p with $g \stackrel{R}{\leftarrow} \mathbb{G}$ and set

$$pk = (\mathbb{G}, g, g_1, g_2, X_1 = g_1^{x_1} \cdot g^z, X_2 = g_2^{x_2} \cdot g^z)$$

where $sk = (x_1, x_2, z) \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p^3$.

• PubEval (pk, r, Φ) : given $(r, s) \in \mathbb{Z}_p^2$ s.t. $(\Phi_1, \Phi_2, \Phi_3) = (g_1^r, g_2^s, g^{r+s})$, output $X_1^r \cdot X_2^s$.

• $\mathsf{PrivEval}(sk, \Phi)$: given $\Phi = (\Phi_1, \Phi_2, \Phi_3) \in \mathbb{G}^3$, output $\Phi_1^{x_1} \cdot \Phi_2^{x_2} \cdot \Phi_3^z$.

22 / 25

イロト イポト イヨト イヨト

Instantiation in groups of prime order

Define $\mathcal{C} = \mathbb{G}^3$ and $\mathcal{V} = (g_1^a, g_2^b, g^{a+b})$.

• SetupSound(λ , t, n): set

 $ec{g_1} = (g_1, 1, g), \qquad ec{g_2} = (1, g_2, g), \qquad ec{arphi} = ec{g_1}^a \cdot ec{g_2}^b.$

• SetupABO(λ, t, n, tag^*): is like SetupSound(λ, t, n) but

$$\vec{\varphi} = \vec{g_1}^a \cdot \vec{g_2}^b \cdot (1, 1, g)^{-\operatorname{tag}^*}$$

and the trapdoor is $\tau := (a, b) \in \mathbb{Z}_p^2$.

- Prove (pk, tag, r, Φ) : given $\Phi = (\Phi_1, \Phi_2, \Phi_3) = (g_1^r, g_2^s, g^{r+s})$ and (r, s), generate a proof that $\Phi \in \mathcal{V}$ w.r.t. the CRS $(\vec{g_1}, \vec{g_2}, \vec{\varphi} \cdot (1, 1, g)^{tag})$.
- SimProve(pk, τ, tag^{*}, Φ): simulate a NIZK proof using τ = (a, b) ∈ Z²_p on the "fake" CRS (g₁, g₂, φ · (1, 1, g)^{tag^{*}}).

Efficiency comparisons

• Estimations at the 128-bit security level

Approaches	Group	Assumptions	Ciphertext
	order		overhead ($\#$ of bits)
Dual	$N = p_1 p_2 p_3$ > 2 ³⁰⁷²	Subgroup Decision	6144
system		Assumptions	
ABO-PS-HPS	$p > 2^{512}$	D-Linear	10240
ABO-PS-HPS	$p > 2^{256}$	SXDH	3328

Figure: Comparisons in terms of ciphertext overhead

- Under D-Linear: 12 pairings to check ciphertexts (using batch-verification); sender computes 19 exponentiations.
- Under SXDH: only 6 pairings to check ciphertexts (with batch-verification); sender computes 7 exponentiations.

E 5 4 E 5

Conclusion

- We described
 - A framework for CCA2-secure *robust* and *non-interactive* threshold cryptosystems secure against *adaptive* corruptions
 - Constructions in prime order groups using simple assumptions
 - Better efficiency
 - Compatibility with adaptively secure DKG protocols
 - with tight security proofs using fewer assumptions
- Open problems:
 - Are there instantiations without pairings?
 - Can we do the same for threshold signatures?

25 / 25